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1 Introduction

The notion of a locally closed set in a topological space was introduced by

Kuratowski and Sierpinski [8]. According to Bourbaki [5], a subset A of a topological space

X is called locally closed in X if it is the intersection of an open set in X and a closed set in

X. Ganster and Reilly [6] used locally closed sets to define LC- Continuity and LC-

irresoluteness. Balachandran, Sundaram and Maki [3] introduced the concept of generalized

locally closed sets in topological spaces and investigated some of their properties. Recently

Sheik John [15] introduced the three new class of sets denoted by w-LC(X, t), w-LC*(X, t)

and w-LC**(X, t) and each of which contains LC(X, t). Also various authors like

Gnanambal [7] and Park and Park [14] have introduced a-locally closed and semi generalized

locally closed sets respectively in topological spaces.
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2 Preliminaries

Throughout the thesis (X, t) and (Y, s) denote topological spaces on which no

separation axioms are assumed unless explicitly stated and they simply written as X and Y

respectively. All sets are considered to be subsets to topological spaces. The complement of

A is denoted by X – A. The closure and interior of a set A are denoted by Cl(A) and int(A)

respectively.

The following definitions are useful in the sequel :

DEFINITION 1.1 : A subset A of a space X is said to be

Semi open [9] if A Ã Cl (Int (A)).

semi-closed set[4] if Int(cl(A)) Õ A.

preopen [5] ifA Ã Int (Cl (A))

preclosed [12] ifCl (Int (A))Õ A

a - open [13] if A Ã Int (Cl (Int A)))

a - closed [11]  ifCl (Int (Cl (A)))Õ A

Semi - preopen [2] (= b - open [1]) if A Ã Cl (Int (Cl (A)))

a semi- pre closed set [1] if Int(cl(Int(A))) Ã A

The family of all semi open sess (resp. semi-pre open sets) of X will be denoted by SO(X)

SPO(X).

sgp-Locally Closed Sets

In this section, we introduce sgp-locally closed sets and sgp-submaximal and study

some of their properties.

Definition 1.2.1: A subset A of a topological space (X, t) is called a semi-generalized-pre

locally closed set (briefly sgplc-set) if A = S « F where S is sgp-open and F is sgp-closed.

The class of all semi-generalized-pre locally closed sets in (X,t) is denoted by SGPLC(X,t).

Definition 1.2.2: A subset A of a topological space (X,t) is said to be SGPLC*-set if there

exist sgp-open set S and a closed set F of (X,t) such that A = S « F.

Definition 1.2.3: A subset A of a topological space (X,t) is said to be SGPLC**-set if there

exist an open set S and a sgp-closed set F of (X,t) such that A = S« F.
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Theorem 1.2.4: For a subset A of (X,t), the following are equivalent:

A Œ SGPLC*(X, t)

A = P « pCl (A) for some sgp-open set P.

pCl (A)-A is sgp-closed.

A » (X-pCl(A)) is sgp-open.

Proof: (1)  (2):- Let AŒ SGPLC* (X,t). Then there exists a sgp-open set P and a closed

set F of (X,t) such that A = P« F. Since A Õ P and A Õ pCl(A) . Therefore we have A Õ P

« pCl(A).

Conversely, since pCl(A) Õ F , P « pCl(A) Õ P « F= A . Which implies that A = P «

pCl(A).

 (1):- Since P is sgp-open and pCl(A) is closed.

P « pCl(A) Œ SGPLC* (X,t).Which implies that AŒ SGPLC* (X,t).

 (4) :- Let F = pCl(A)-A. Then F is sgp-closed by the assumption and X – F = X « (X

– (pCl(A) – A)) = A » (X-pCl(A)). But X-F is sgp-open. This shows that A » (X - pCl(A)) is

sgp-open .

 (3):- Let U = A » (X-pCl(A)). Since U is sgp-open, X-U is sgp-closed. X – U  = X- (A

» (X – pCl(A))) = pCl(A) « (X-A) =pC(A) – A.

Thus pCl(A) – A is sgp-closed set .

(4)  (2):- Let P = A » (X – pCl(A)) Thus P is sgp-open . We prove that A = P «

pCl(A) for some sgp-open set P. P « pCl(A)  = (A » (X-pCl(A))) « pCl(A)  = (pCl(A) « A)

» (pCl(A) « (X – pCl(A))) = A » f = A. Therefore A = P « pCl (A).

(2)  (4):- Let A = P « pCl (A) for some sgp-open set P. Then we prove that A » (X-

pCl(A)) is sgp-open. Now A » (X-pCl(A)) = (P « pCl(A)) » (X – pCl(A)) = P «

(pCl(A) » (X – pCl(A))) = P. Which is sgp-open. Thus A » (X – pCl(A)) is sgp-open .

Theorem 1.2.5: If A, BŒ SGPLC (X,t), then A « B Œ SGPLC (X,t).

Proof: From the assumptions, there exist sgp-open sets P and Q such that A = P «

pCl (A) and B = Q « pCl (B). Then A « B = (P « Q) « (pCl (A) « pCl(B)). Since P « Q is

sgp-open set and pCl (A) « pCl (B) is closed. Therefore A « B Œ SGPLC (X,t).

Theorem 1.2.6:  If A ŒSGPLC (X,t) and B is sgp-closed set in (X,t), then  A « B Œ

SGPLC (X,t).
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Proof: Since A Œ SGPLC (X,t), there exist a sgp-open set P and a sgp-closed set Q such that

A = P « Q. Now A « B = (P « Q) « B = P «(Q « B). Since P is sgp-open and Q « B is

sgp-closed, Therefore A « B Œ SGPLC (X,t).

Theorem 1.2.7: If A ŒSGPLC*(X,t) and B is sgp-open (or closed) set in (X,t), then A « B

Œ SGPLC*(X,t).

Proof: Since A Œ SGPLC*(X,t), there exist a sgp-open set P and a closed set Q such that A

= P « Q. Now A « B = (P « Q) « B = (P « B) « Q. Since P « B is sgp-open and Q is

closed, it follows that A « B Œ SGPLC* (X,t).

In this case of B being a closed set, we have A « B = (P « Q) « B = P« (Q « B). Since P

is sgp-open set and Q « B is closed. Thus A « B Œ SGPLC* (X,t).

Theorem 1.2.8: If A ŒSGPLC**(X,t) and B is sgp-closed (resp. open) set in (X,t), then A

« B Œ SGPLC**(X,t).

Proof: Since A Œ SGPLC**(X,t), there exist an open set P and a sgp-closed set Q such that

A = P « Q. Now A « B = (P « Q) « B = P «(Q « B). Since P is open and Q«B is sgp-

closed, Therefore A « B Œ SGPLC**(X,t).

In this case of B being an open set, we have A « B = (P « Q) «B = (P «B) «Q. Since P «B

is open and Q is sgp-closed, Thus A « B Œ SGPLC**(X,t).

Theorem 1.2.9: Let (X,t) and (Y, s) be topological spaces.

If A Œ SGPLC (X,t) and B Œ SGPLC (Y, s), then A ¥ B Œ SGPLC      (X ¥ Y, t ¥ s )

If A Œ SGPLC*(X,t) and B Œ SGPLC*(Y, s), then A ¥ B Œ SGPLC*  (X ¥ Y, t ¥ s ).

If A Œ SGPLC**(X,t) and B Œ SGPLC** (Y, s), then A ¥ B Œ SGPLC**(X ¥ Y, t ¥ s).

Proof: 1) Let A Œ SGPLC (X,t) and B Œ SGPLC (Y, s). Then there exist sgp-open sets M

and M l of (X,t) and (Y, s) and sgp-closed sets N and N l of X and Y respectively such that

A= M « N and B = M l« N l .

Then A ¥ B = (M ¥ M l) « (N ¥ N l ) holds. Hence A ¥ B Œ SGPLC (X ¥ Y, t ¥ s ).

Let A Œ SGPLC*(X,t) and B Œ SGPLC*(Y, s). Then there exist sgp-open sets K and K l

of (X,t) and (Y, s) and sgp-closed sets L and L l of X and Y respectively such that A= K « L

and B = K l« L l .

Then A ¥ B = (K ¥ K l) « (L ¥ L l ) holds. Hence A ¥ B Œ SGPLC*(X ¥ Y,  t ¥ s ).
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Let A Œ SGPLC** (X,t) and B Œ SGPLC**(Y, s). Then there exist open sets W and W l

of (X,t) and (Y, s) and sgp-closed sets V and V l of X and Y respectively such that A= W «

V and B = W l« V l .

Then A ¥ B = (W ¥ W l) « (V ¥ V l ) holds.

Hence A ¥ B Œ SGPLC**(X ¥ Y, t ¥ s ).

Definition 1.2.10: A topological space (X,t) is said to be sgp-submaximal if every dense

subset in it is sgp-open.

Theorem 1.2.11: Every submaximal space is sgp-submaximal.

Proof: Let (X,t) be a submaximal space and A be a dense subset of (X,t). Then A is open.

But every open set is sgp-open and so A is sgp-open. Therefore (X,t) is sgp-submaximal.

The converse of the above theorem need not be true as seen from the following example.

Example 1.2.12: In the Example 6.2.11, the space (X,t) is sgp-submaximal but not

submaximal, every dense subset is sgp-open. However the set A= {a, b} is dense in (X,t),

but it is not open in X. Therefore (X,t) is not submaximal.

Theorem 1.2.13: Every w-submaximal space is sgp-submaximal.

Proof: Let (X,t) be a w-submaximal space and A be a dense subset of (X,t). Then A is w-

open. But every w-open set is sgp-open and so A is sgp-open. Therefore (X,t) is sgp-

submaximal.

The converse of the above theorem need not be true as seen from the following example.

Example 1.2.14: Let X = {a, b, c} and t = {X, f, {a}}. Then the space (X,t) is sgp-

submaximal but not an w-submaximal.

Remark 1.2.15: g-submaximals and sgp-submaximals are independent as seen from the

following examples.

Example 1.2.16: In the Example 6.2.31, the space (X,t) is g-submaximal but not a sgp-

submaximal, because for the subset {a, c} is dense in (X,t) it is not a sgp-open set in (X,t)

but it is g-open in (X,t).

Example 1.2.17: Let X = {a, b, c} and t = {X, f, {a, b}}. Then the space (X,t) is sgp-

submaximal but not a g-submaximal, because for the subset {b, c} is dense in (X,t) it is not a

g-open set in (X,t) but it is sgp-open in (X,t).
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