

SGP-LOCALLY CLOSED SETS IN TOPOLOGICAL SPACES (PART -II)

Tippeshi. V. Marigoudar¹ & Manjunathayya. M. Holliyavar²

¹Department of Mathematics, Research Scholar, (PPMAT0168), Rayalseema University, Kurnool-518007. (A.P), India. vaishnavimarigoudar@gmail.com ²Department of Mathematics,KLE Society's SSMS College, Athani -591304 Karnataka State,India mmholliyavar@gmail.com

Paper Received On: 21 JUNE 2021 Peer Reviewed On: 30 JUNE 2021 Published On: 1 JULY 2021 Content Originality & Unique: 87%

Abstract

The aim of this paper is to introduce the new class of sgp-locally closed sets in topological spaces and studied some of their properties and characterizations.

Keywords – *Topological spaces,* SGPLC(X, τ), SGPLC*(X, τ) SGPLC**(X, τ) LC(X, τ) AMS Subject Classifications: 54A05, 54A10

<u>Scholarly Research Journal's</u> is licensed Based on a work at <u>www.srjis.com</u>

1 Introduction

The notion of a locally closed set in a topological space was introduced by Kuratowski and Sierpinski [8]. According to Bourbaki [5], a subset A of a topological space X is called locally closed in X if it is the intersection of an open set in X and a closed set in X. Ganster and Reilly [6] used locally closed sets to define LC- Continuity and LCirresoluteness. Balachandran, Sundaram and Maki [3] introduced the concept of generalized locally closed sets in topological spaces and investigated some of their properties. Recently Sheik John [15] introduced the three new class of sets denoted by ω -LC(X, τ), ω -LC*(X, τ) and ω -LC**(X, τ) and each of which contains LC(X, τ). Also various authors like Gnanambal [7] and Park and Park [14] have introduced α -locally closed and semi generalized locally closed sets respectively in topological spaces.

2 Preliminaries

Throughout the thesis (X, τ) and (Y, σ) denote topological spaces on which no separation axioms are assumed unless explicitly stated and they simply written as X and Y respectively. All sets are considered to be subsets to topological spaces. The complement of A is denoted by X – A. The closure and interior of a set A are denoted by Cl(A) and int(A) respectively.

The following definitions are useful in the sequel :

DEFINITION 1.1 : A subset A of a space X is said to be

- (i) Semi open [9] if $A \subset Cl$ (Int (A)).
- (ii) semi-closed set[4] if $Int(cl(A)) \subseteq A$.
- (iii) preopen [5] if $A \subset Int(Cl(A))$
- (iv) preclosed [12] if Cl (Int (A)) \subseteq A
- (v) α open [13] if A \subset Int (Cl (Int A)))
- (vi) α closed [11] ifCl (Int (Cl (A))) \subseteq A
- (vii) Semi preopen [2] (= β open [1]) if A \subset Cl (Int (Cl (A)))
- (viii) a semi- pre closed set [1] if $Int(cl(Int(A))) \subset A$

The family of all semi open sess (resp. semi-pre open sets) of X will be denoted by SO(X) SPO(X).

sgp-Locally Closed Sets

In this section, we introduce sgp-locally closed sets and sgp-submaximal and study some of their properties.

Definition 1.2.1: A subset A of a topological space (X, τ) is called a semi-generalized-pre locally closed set (briefly sgplc-set) if $A = S \cap F$ where S is sgp-open and F is sgp-closed.

The class of all semi-generalized-pre locally closed sets in (X,τ) is denoted by SGPLC (X,τ) .

Definition 1.2.2: A subset A of a topological space (X,τ) is said to be SGPLC*-set if there exist sgp-open set S and a closed set F of (X,τ) such that $A = S \cap F$.

Definition 1.2.3: A subset A of a topological space (X,τ) is said to be SGPLC**-set if there exist an open set S and a sgp-closed set F of (X,τ) such that $A = S \cap F$.

Theorem 1.2.4: For a subset A of (X,τ) , the following are equivalent:

- 1) $A \in SGPLC^*(X, \tau)$
- 2) $A = P \cap pCl(A)$ for some sgp-open set P.
- 3) pCl (A)-A is sgp-closed.
- 4) $A \cup (X-pCl(A))$ is sgp-open.

Proof: (1) \Rightarrow (2):- Let $A \in SGPLC^*$ (X, τ). Then there exists a sgp-open set P and a closed set F of (X, τ) such that $A = P \cap F$. Since $A \subseteq P$ and $A \subseteq pCl(A)$. Therefore we have $A \subseteq P \cap pCl(A)$.

Conversely, since $pCl(A) \subseteq F$, $P \cap pCl(A) \subseteq P \cap F = A$. Which implies that $A = P \cap pCl(A)$.

(2) \Rightarrow (1):- Since P is sgp-open and pCl(A) is closed.

 $P \cap pCl(A) \in SGPLC^*(X,\tau)$. Which implies that $A \in SGPLC^*(X,\tau)$.

(3) \Rightarrow (4) :- Let F = pCl(A)-A. Then F is sgp-closed by the assumption and X – F = X \cap (X – (pCl(A) – A)) = A \cup (X-pCl(A)). But X-F is sgp-open. This shows that A \cup (X - pCl(A)) is sgp-open.

(4) \Rightarrow (3):- Let U = A \cup (X-pCl(A)). Since U is sgp-open, X-U is sgp-closed. X – U = X- (A \cup (X – pCl(A))) = pCl(A) \cap (X-A) =pC(A) – A.

Thus pCl(A) - A is sgp-closed set.

(4) \Rightarrow (2):- Let P = A \cup (X – pCl(A)) Thus P is sgp-open. We prove that A = P \cap pCl(A) for some sgp-open set P. P \cap pCl(A) = (A \cup (X-pCl(A))) \cap pCl(A) = (pCl(A) \cap A) \cup (pCl(A) \cap (X – pCl(A))) = A \cup ϕ = A. Therefore A = P \cap pCl (A).

(2) \Rightarrow (4):- Let $A = P \cap pCl(A)$ for some sgp-open set P. Then we prove that $A \cup (X-pCl(A))$ is sgp-open. Now $A \cup (X-pCl(A)) = (P \cap pCl(A)) \cup (X-pCl(A)) = P \cap (pCl(A) \cup (X-pCl(A))) = P$. Which is sgp-open. Thus $A \cup (X-pCl(A))$ is sgp-open.

Theorem 1.2.5: If A, B \in SGPLC (X, τ), then A \cap B \in SGPLC (X, τ).

Proof: From the assumptions, there exist sgp-open sets P and Q such that $A = P \cap pCl(A)$ and $B = Q \cap pCl(B)$. Then $A \cap B = (P \cap Q) \cap (pCl(A) \cap pCl(B))$. Since $P \cap Q$ is sgp-open set and $pCl(A) \cap pCl(B)$ is closed. Therefore $A \cap B \in SGPLC(X,\tau)$.

Theorem 1.2.6: If $A \in SGPLC(X,\tau)$ and B is sgp-closed set in (X,τ) , then $A \cap B \in SGPLC(X,\tau)$.

Proof: Since $A \in SGPLC(X,\tau)$, there exist a sgp-open set P and a sgp-closed set Q such that $A = P \cap Q$. Now $A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B)$. Since P is sgp-open and $Q \cap B$ is sgp-closed, Therefore $A \cap B \in SGPLC(X,\tau)$.

Theorem 1.2.7: If $A \in SGPLC^*(X,\tau)$ and B is sgp-open (or closed) set in (X,τ) , then $A \cap B \in SGPLC^*(X,\tau)$.

Proof: Since $A \in SGPLC^*(X,\tau)$, there exist a sgp-open set P and a closed set Q such that A = P \cap Q. Now A \cap B = (P \cap Q) \cap B = (P \cap B) \cap Q. Since P \cap B is sgp-open and Q is closed, it follows that A \cap B \in SGPLC* (X, τ).

In this case of B being a closed set, we have $A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B)$. Since P is sgp-open set and $Q \cap B$ is closed. Thus $A \cap B \in SGPLC^*(X,\tau)$.

Theorem 1.2.8: If $A \in SGPLC^{**}(X,\tau)$ and B is sgp-closed (resp. open) set in (X,τ) , then $A \cap B \in SGPLC^{**}(X,\tau)$.

Proof: Since $A \in SGPLC^{**}(X,\tau)$, there exist an open set P and a sgp-closed set Q such that $A = P \cap Q$. Now $A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B)$. Since P is open and $Q \cap B$ is sgp-closed, Therefore $A \cap B \in SGPLC^{**}(X,\tau)$.

In this case of B being an open set, we have $A \cap B = (P \cap Q) \cap B = (P \cap B) \cap Q$. Since $P \cap B$ is open and Q is sgp-closed, Thus $A \cap B \in SGPLC^{**}(X,\tau)$.

Theorem 1.2.9: Let (X,τ) and (Y, σ) be topological spaces.

1) If $A \in SGPLC(X,\tau)$ and $B \in SGPLC(Y,\sigma)$, then $A \times B \in SGPLC(X \times Y, \tau \times \sigma)$

2) If $A \in SGPLC^*(X,\tau)$ and $B \in SGPLC^*(Y,\sigma)$, then $A \times B \in SGPLC^*$ $(X \times Y, \tau \times \sigma)$.

3) If $A \in SGPLC^{**}(X,\tau)$ and $B \in SGPLC^{**}(Y, \sigma)$, then $A \times B \in SGPLC^{**}(X \times Y, \tau \times \sigma)$.

Proof: 1) Let $A \in SGPLC(X,\tau)$ and $B \in SGPLC(Y, \sigma)$. Then there exist sgp-open sets M and M^{*l*} of (X,τ) and (Y, σ) and sgp-closed sets N and N^{*l*} of X and Y respectively such that $A = M \cap N$ and $B = M^{l} \cap N^{l}$.

Then $A \times B = (M \times M^{l}) \cap (N \times N^{l})$ holds. Hence $A \times B \in SGPLC (X \times Y, \tau \times \sigma)$.

2) Let $A \in SGPLC^*(X,\tau)$ and $B \in SGPLC^*(Y, \sigma)$. Then there exist sgp-open sets K and K^{*l*} of (X,τ) and (Y, σ) and sgp-closed sets L and L^{*l*} of X and Y respectively such that $A = K \cap L$ and $B = K^{l} \cap L^{l}$.

Then $A \times B = (K \times K^{l}) \cap (L \times L^{l})$ holds. Hence $A \times B \in SGPLC^{*}(X \times Y, \tau \times \sigma)$.

3) Let $A \in SGPLC^{**}(X,\tau)$ and $B \in SGPLC^{**}(Y, \sigma)$. Then there exist open sets W and W^{*l*} of (X,τ) and (Y, σ) and sgp-closed sets V and V^{*l*} of X and Y respectively such that $A = W \cap V$ and $B = W^{l} \cap V^{l}$.

Then $A \times B = (W \times W^{l}) \cap (V \times V^{l})$ holds.

Hence $A \times B \in SGPLC^{**}(X \times Y, \tau \times \sigma)$.

Definition 1.2.10: A topological space (X,τ) is said to be sgp-submaximal if every dense subset in it is sgp-open.

Theorem 1.2.11: Every submaximal space is sgp-submaximal.

Proof: Let (X,τ) be a submaximal space and A be a dense subset of (X,τ) . Then A is open.

But every open set is sgp-open and so A is sgp-open. Therefore (X, τ) is sgp-submaximal.

The converse of the above theorem need not be true as seen from the following example.

Example 1.2.12: In the Example 6.2.11, the space (X,τ) is sgp-submaximal but not submaximal, every dense subset is sgp-open. However the set A= {a, b} is dense in (X,τ) , but it is not open in X. Therefore (X,τ) is not submaximal.

Theorem 1.2.13: Every ω-submaximal space is sgp-submaximal.

Proof: Let (X,τ) be a ω -submaximal space and A be a dense subset of (X,τ) . Then A is ω open. But every ω -open set is sgp-open and so A is sgp-open. Therefore (X,τ) is sgpsubmaximal.

The converse of the above theorem need not be true as seen from the following example.

Example 1.2.14: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Then the space (X,τ) is sgp-submaximal but not an ω -submaximal.

Remark 1.2.15: g-submaximals and sgp-submaximals are independent as seen from the following examples.

Example 1.2.16: In the Example 6.2.31, the space (X,τ) is g-submaximal but not a sgpsubmaximal, because for the subset $\{a, c\}$ is dense in (X,τ) it is not a sgp-open set in (X,τ) but it is g-open in (X,τ) .

Example 1.2.17: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Then the space (X,τ) is sgp-submaximal but not a g-submaximal, because for the subset $\{b, c\}$ is dense in (X,τ) it is not a g-open set in (X,τ) but it is sgp-open in (X,τ) .

Tippeshi. V. Marigoudar & Manjunathayya. M. Holliyavar (Pg. 14917-14922)

REFERENCES

- Abd-El Monsef, M.E., El-Deeb, S.N. and Mahmoud, R.A., β open and β continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 70-90.
- D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), No.1, 24 32.
- K. Balachandran, P. Sundaram and H. Maki, On generalized locally closed sets and GLC-continuous Appl. Math., 27(3),(1996),235-244. functions, Indian.Pure
- N. Biswas, Characterization of semicontinuous mappings, Atti. Accad. Naz. Lience. Rend. Cl. Sci. Fis. Mat. Nat (8), 48 (1970), 399 – 402.
- N. Bourbaki, General topology, Part I, Addison-Wesley, Reading, Mass, 1966.
- M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internal J. Math. and Math. Sci., 12(1989), 417-424.
- Y. Gnanambal, Studies on generalized pre-regular closed sets and generalization of locally closed sets, Ph.D, Thesis Bharathiar University, Coimbatore, (1998).
- C. Kuratowski and W. Sierpinski, Sur les differences deux ensembles fermes, Tohoku Math .J., 20(1921), 22-25.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- Mashhour, A.S., I.A. Hasanein and S.N. El-Deeb, On α -continuous and α open mappings, Acta. Math Hunga. 41 (1983), 213 – 218.
- Mashhour, A.S., Abd El-Monsef, M.E., and I.A. Hasanein: On pretopological spaces, Bull. Math. Soc.Sci.Math. R.S.R. 28(76) (1984), 39-45.
- Govindappa Navalagi, and Girishsajjanshettar, (2012), Some properties of (s, p)-open and (s, p)closed functions, Int. J. of Matematical sciences and applications, Vol. 2 No.1 (2012), Pp. 13-16.
- G. B. Navalagi, Completely preirresolute functions and completely gp-irresolute functions, IJMMS
- J. H. Park and J. K. Park, On semi-generalized locally closed sets, and SGLC-continuous functions, Indian Jl. Pure Appl. Math., 31(9) (2000), 1103-1112.
- M. Sheik John, A study on generalizations of closed sets and continuous maps in topological spaces and bitopological spaces, Ph.D., thesis, Bharathiar University, Coimbatore (2002).

14922